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Introduction

Linear economy =

Conventional industrial process
« take, make, dispose »

« Infinite » non-
renewable Unlimited
ressources waste

LINEAR MODEL

EXTRACT MANUFA et DISTRIBUTE USE DISPOSE



Circular economy vs linear economy

- &

Circular economy :

2002 : « Cradle to Cradle » -
Michael Braungart and

William MacDonough

consumers
consumers (carnivore)
(omnivore)

(omnivore)

i 8., 5k ‘/E/ '

Sustainable Principle:
Production Process including
Closed Recycling Loops based

on Ecosystem Organisation
(biomimetism)

" L €soil
consumers
(herbivore) producers

#oﬁ&&

detritivores Kathy Sarns




History
Evolution and Elimination of waste concept

e Waste hierarchy
Ladder of Lansink (Father of the waste of the hierarchy) - 1979




Waste Hierarchy

Lansink’s Ladder

x

Best Use

B Reuse

( Recvcle reallocation

Waste

D Energy
F Landfill

After prevention, source reduction and recycling of Transposable /
manufacturing by-products, waste and effluent treatment applicable to
can be a new opportunity to create value while reducing microalgal

polluting flows biorefineries
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History
Elimination of waste concept

e Waste hierarchy
* Ladder of Lansink (Father of the waste of the hierarchy) - 1979

* Industrial ecology (Science sustainibility)

* Material and energy flow through industrial systems — Robert Frosh and Nicolas
Gallopoulos — 1989

* Producer responsibility (« Polluter pays »)
* Extended producer responsibility — Thomas Lindhigvist - 1990

e Cradle to Cradle (C2C)

*  Michael Braungart and William McDonough (Waste is food) — 2002
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Cradle to cradle
CradletoCradle

raw
materials

biological technical

1 100% Renewable Energy Use 5
criteria

2 Water Stewardship clean water output
3 Social Responsibility positive impact on community
4 Material Reutilization recyclability / compostability

5 Material Health impact on human & environmental



History
Elimination of waste concept

e Waste hierarchy
* Ladder of Lansink (Father of the waste of the hierarchy) - 1979

* Industrial ecology (Science sustainibility)

* Material and energy flow through industrial systems — Robert Frosh and Nicolas
Gallopoulos — 1989

* Producer responsibility (« Polluter pays »)
* Extended producer responsibility — Thomas Lindhigvist - 1990

e Cradle to Cradle (C2C)

*  Michael Braungart and William McDonough (Waste is food) — 2002

e Circular Economy
* Mac Arthur Foudation 2010
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From linear to circular economy

Linear economy Reuse economy Circular economy

Raw materials Raw materials

Production v %

-

Non-recyclable waste

Past Present




Circular economy

7 Key Principles :

Ecoconception
Industrial Ecology

The functional Economy
Re-employment

Repairs

Ruse

Recycling

Attempt to reconcile:
growth (economic,
demographic),
resources
and environment
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PRINCIPLE

1

Preserve and enhance
natural capital by controlling

Increasingly powered by
renewable energy

Mining/materials rfhanufacturing

inite stocks and balancing
renewable resource flows
ReSOLVE levers: regenerate,
virtualise, exchange

Biological cycles

PRINCIPLE

2

Optimise resource yields

by circulating products,
components and materials
in use at the highest utility
at all times in both technical
and biological cycles
ReSOLVE levers: regenerate,
share, optimise, loop

Anaerobic
digestion/
composting

Biochemical
feedstock

Cascades

Parts manufacturer

Vo

Product manufacturer

Voo

Service provider

@ Mainte
Consumer User

Collection Collection
| - 1

Technical cycles

nce

Extraction of
biochemical
feedstock?

PRINCIPLE

3

Foster system effectiveness
by revealing and designing
out negative externalities
All ReSOLVE levers

TITGTIOT Y ST TS Ty

2 Can take both post-harvest and post-consumer waste as
SOQURCE: Ellen MacArthur Foundation -
Adapted from the Cradle to Cradle Design Protocol by Bra

hn input

ngart & McDonough

Wb ° b

P =

Energy recovery

Leakage to be minimised

Landfill

ELLEN MACARTHUR FOUNDATION




Effective industrial symbiosis

Kalundborg Symbiosis : 18" functioning example

Based on exchanges of energy, water and materials in closed loops

 Located in Kalundborg, 25 different resource streams
Denmark exchanged

* 6 private partners  Collaboration dating back to

3 public partners 19_61

Over 5000 employees *  Winner of Gothenburg
combined Sustainability Award 2018

L RELUNDBORG SYMBIOSIS

EQUINOR REFINING DENMARK AN WX E \ KALUNDBORG

— /7 UTILITY KALUNDBORG MUNICIPALITY AND BIOPRO
— / — AVISTAOIL =

e O

NOVOZYMES AND NOVO NORDISK

= .\ GYPROC SAINT GOBAIN

ARGO

http://www.symbiosis.dk/en/
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e

KALUNDBORG
SYMBIOSIS Argo ®

Lake Tisse ®
‘ Kalundborg Utility ®
9 4
7 8
e 4
Orsted ®
Gyproc @ o 117 4 Novo Nordisk & Novozymes

9
14

4.12 9 Land Owner's Association @©
18 ‘
15 “ 19 ﬁx\\( i .
9 Equinor® 10 11 1 Novo NordEk ® i '
34 19 .

16

Kalundborg Utility
Heat pump ®

23 -
23 -
w Inbicon © 2021 ..‘ 1 3 4 12
501 ' A7 W N
9 Novozymes @

78 Biogas plant @ :

4
Novozymes
Energy @ Wastewater & Biogas ®
22
Water ® 6 J 725247 4
Materials ® 25 o
http://www.symbiosis.dk/en/
2

Annual combined benefits for the partners :

* Bottom-line savings of 24 million € « 3,6 million m3 water

* 14 million € in socio-economic « 100 GWh of energy
savings « 87,000 tons of materials

* 635,000 tons of CO,




Microalgae as raw materials in biorefinery concept
and circular economy

Nature's Culture Collection

== >
% \P:ycoprospecting
‘ ‘]‘ | 1/
Sunlight

e @m x.,..
AN

co;
a8 Algae-based \
% Residuals Bioresource Algal Biomass

(lipids, carbohydrates,
— Cycle proteins, pigments)

Methane

'- AL
Algae-based
w Biorefinery
| AR & /

o ax 1_;,...1'
) :olay




Migroalgae : a versatile raw materials for biorefinery
and circular economy

~ Other Divisions of
- Bacteria

2,800 spp.

Opisthokonta
Animalia

Land Plants

TR -
Chlorophyta i \\\ Fung
34,000-124,000 spp. : \ Rhizaria
' Chlorarachniophyta
Plantae | Chromalveolata  -20spp.
] Haptophyta 2,000 spp.
! Cryptophyta 1,200 spp.
; Stramenopiles 110,000-10,000,000 spp.

© . Pyrrophyta 3,500-11,000 spp.

A.C. Wilkie et al. 2011



Biochemical composition

High plasticity to _
direct Triacylgy- (triacylgycerides with mainly C,, to C,, fatty acids,

bioproduction to cerides unsaturated)
specific fatty Up to 70% of dry weight

acids or other

met.abolltes of Membrane (up to 40 % of fatty acids are polyunsaturated,
Interest lipids i.e. eicosapentaaenoic acid (EPA))
Up to 7% EPA of dry weight

Carbo- a-(1-4)-glucane, B-(1-3)-glucane, fructane,

hydrates glycerol
Up to 50% of dry weight

Proteins with all amino acids
Proteins Partly soluble and partly bounded as particulate
Up to 50% of dry weight

Carotenoids (astaxanthin, fucoxanthin, lutein)
Valuable Phytosteroles, all vitamins et antioxidants
compounds Antifungal, -viral ou —microbial
From 1 — 5% each of dry weight




Factors Affecting Biochemical Profiles

Factors

* Light (photo-period and intensity)
* Temperature

* Nutrient-status (nitrogen availability)

e Nutrition (media)

Fig. 3. Indigenous alga with high-value compounds. Euglena cf. sanguinea collected from

a pond enriched by agricultural run-off. The photo, taken under brightfield

. . transmission illumination, shows distinct regions of red carotenoids (presumably

4 Sa I I n Ity astaxanthin esters), green photosynthetic chlorophyll, and clear paramylon carbohy-
drate granules (storage material).

« Carbon availability (CO, or organic carbon) A.C. Wilkie et al. 2011

* Growth phase

Affect the biochemical composition and therefore bioproduct
potential of microalgae




Microalgae : 3G biorefinery

First Generation : edible crop

Sugarcane, rice, wheat, patato, sugar

beet, etc Low scale
Antioxidants,
Second generation : wastes, medcines, dietary
lignocellulosic biomass
Sugarcane bagasse, forest residues,
grass, cell biomass from fermentation,

: : etc
Biorefinery

Third generation : Algae
b Botryococcus braunii, Crypthecodinium,

Nitzschi sp., etc High scale
Biopolymer, biofuels,

chemicals, food,
biofertilizers

Forth generation : non-edible
CO, Jatropha, Castor, Karanja

Adapted from Romeo-Garcia et al. 2017
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Value pyramid of biomass
in a biorefinery concept

A

Health & Lifestyle
(farma, chemicals, cosmetics, nutraceuticals...)

Alimentation
(food, feed)
J
_ N
Chemistry and Materials
(Commodity and building chemicals, fertilizers, ...)
S o

Energy

‘ (Heat, Power, Fuels, ..)
J

r
.

Added Value
Yied Volume




L Zhu /R enewable and Sustainable Energy Reviews 41 (2015) 1376-1384

Industrial fields \/
potentially covered S \ / \

with microalgae /
ressources T

\ \ / I

N
1/\ By-products/ ! I
\ Co-products Food/feed /
N\ / Nutrition /
Cosmeti
20 years smeties .~ - ,
o | -— ;
10 years

Biofuels

N Medicine Animal feed

O Qﬁreen OEnergy . el

Fig. 4. Potential products from microalgae during biorefinery.

Chemistry
Nutra- Mass Market
O ceuticals Low value
Nutrition Cosmetics products
') S-4 billions
Aqua- Middle Market
culture

$-700 High added value
millions niche market

segments Adapted from Pulz and Gross, 2004




Mainstream Biorefinery with Microalgal Biomass
Cascad Principle

Sequential steps for optimal biomass use bF_ractions o;
‘ I0mass an
— Energy recovery stage at the end > Utilization
of the lifecycle cascades

Fermentations /
Enzymatic reaction/

Chemical transformation
~ ~ N

Energy

Carbohydrates/

lipides/
proteins
. Crude extract fractions
Production Pre-treatment / ‘ /
Harvesting/Dewatering )
Highvalue
compounds
Carotenoids: Xanthophylis Il
oo S T \V\/\:”L/Vq T
TR e Valuables
&t . 220, compounds and
a B Coproducts molecules
| . .
valorization

o

o

ne
|

¥ ow




Microalgae : Tool for waste treatment

Problem « » Process <« » Products

Benefitting Industries _
— Animal feeds

Coal-fired Power Stations
Underground coal mines

Metal refineries — ‘ Algal biofuels ‘

Waste water remediation

T —> ‘ Fertilizer/Biochar‘

Algae Cultivation ‘ —>‘ Biorefining ‘

l - ‘ Nutraceuticals ‘
Outcomes
GHG emission abatement y
Water recycling ‘ Carotenoids ‘
Waste water Nutrient remediation

Bioremediation (metals)



CO, mitigation in a power plant using chemical looping
combustion and microalgae cultivation for biofuel production

~

Nutrients, make-up water, —._; e
sunlight

Atmosphere €————

Fuel

Mungui-Lopez et al. 2018



Nutriment rich Wastewater
as feedstock

SMART IRRIGATION

NUTRIENTS RECOVERY

Loxviste

._
15,

AGRICULTURAL

WASTEWATER
SOLAR DISINFECTION

Homogenezation tank " 3
10m* Lamedia settier

DIGESTATE
» » I | I l VALORISATION
Clanfed effivent n

Drgestate
BIOMASS ANAEROBIC —T

> — Co-
PRETREATMENT
Biomass DIGESTION Bioges
Storage tank, 1 m’ § % g 9
T m BIOGAS UPGRADE
URBAN WASTEWATER Hybnd photobioreactors Storage tanks PHB PRODUCTION
FROM SEPTIC TANK 385m sim

I MICROALGAE PRODUCTION I n:;g;‘shl‘s:l(;

Figure 1 | Scheme of the INCOVER plant located at the Agropolis campus, Viladecans, Barcelona.

Uggetti et al. 2018




Microalgal biorefinery
integrating recovery and

recycling of gaseous and
liquid effluents
+ by-products

¥

Integrated
environmental
biorefinery

Waste treatment

(human activities)

Resource
exploitation

Facility design;
Species selection;

System Energy (heat or cooling);
design for Light;
optimization Nutrients (wastewater);
CO:; (flue gas)
Microalgae growth
CO;recycling ' ﬂ
Chemicals; v
Energy

Harvest and drying

Solvents;

Energy Extraction

Nutrient recycling

Water [recycling

Biostimulants,
Biofertilisants,
Biopesticieds, Mat.
premieres pour
autres productions

{ Post-extracts J

B
' 5;{“

High-value products

Solvents; EXtraction an
Energy  Esterification

\

Anaclzrobic

Energy digestion \l
Leftover I
) —

Chemicals;

=> : System inputs
ﬂ: System processes

‘ : System outputs Biogas

Residues ]_

Biodiesel

v

Fertilizer l

Adapted from Zhu 2015




Conclusions

We need Circular economy for :
*  Environment: inefficient use of resources has negative environmental impacts

Access to raw materials: scarcity or depletion of resources, dependence of EU
on imports from often politically unstable countries- question of price volatility

Societal pressures: global middle class to double to nearly 5 billion by 2030,
which will cause rise in consumption and increase pressure on resources

* Innovation and growth potential

Environmental Microalgal Biorefinery

(5
Hellweg and Mila i"Canals 2014
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Thank for your attention




