Université de Mons

biosciences

UMONS RESEARCH INSTITUTE FOR BIOSCIENCES

Microalgae and Cyanobacteria towards a Circular Economy

Anne-Lise Hantson

UMONS – Chemical and Biochemical Process Engineering

anne-lise.hantson@umons.ac.be

GoToS3

Plan

- ✓ Introduction
- ✓ History
- Circular economy definition
- ✓ Effective Industrial symbiosis
- Microalgae as raw materials for biorefinery and circular economy
- ✓ 3G biorefinery
- Examples of microalgae integration in 3G bioraffineries and circular economy

Introduction

Linear economy = Conventional industrial process « take, make, dispose »

Circular economy vs linear economy

Circular economy :

2002 : « Cradle to Cradle » -Michael Braungart and William MacDonough Sustainable Principle: Production Process including Closed Recycling Loops based on Ecosystem Organisation (biomimetism)

Université de Mons Anne-Lise Hantson | Workshop Alpo - August 13th, 2015

History

Evolution and Elimination of waste concept

- Waste hierarchy
 - Ladder of Lansink (Father of the waste of the hierarchy) 1979

Waste Hierarchy

Université de Mons Anne-Lise Hantson | Workshop Alpo - August 13th, 2015

History Elimination of waste concept

- Waste hierarchy
 - Ladder of Lansink (Father of the waste of the hierarchy) 1979
- Industrial ecology (Science sustainibility)
 - Material and energy flow through industrial systems Robert Frosh and Nicolas Gallopoulos – 1989
- Producer responsibility (« Polluter pays »)
 - Extended producer responsibility Thomas Lindhiqvist 1990
- Cradle to Cradle (C2C)
 - Michael Braungart and William McDonough (Waste is food) 2002

Cradle to cradle

History Elimination of waste concept

- Waste hierarchy
 - Ladder of Lansink (Father of the waste of the hierarchy) 1979
- Industrial ecology (Science sustainibility)
 - Material and energy flow through industrial systems Robert Frosh and Nicolas Gallopoulos – 1989
- Producer responsibility (« Polluter pays »)
 - Extended producer responsibility Thomas Lindhiqvist 1990
- Cradle to Cradle (C2C)
 - Michael Braungart and William McDonough (Waste is food) 2002
- Circular Economy
 - Mac Arthur Foudation 2010

From linear to circular economy

Circular economy

7 Key Principles :

- Ecoconception
- Industrial Ecology
- The functional Economy
- Re-employment
- Repairs
- Ruse
- Recycling

Attempt to reconcile: growth (economic, demographic), resources and environment

Effective industrial symbiosis

Kalundborg Symbiosis : 1^{er} functioning example

Based on exchanges of energy, water and materials in closed loops

- Located in Kalundborg, Denmark
- 6 private partners
- 3 public partners
- Over 5000 employees combined

- 25 different resource streams exchanged
- Collaboration dating back to 1961
- Winner of Gothenburg Sustainability Award 2018

http://www.symbiosis.dk/en/

Annual combined benefits for the partners :

- Bottom-line savings of 24 million € 3,6 million m³ water
- 14 million € in socio-economic savings
- 635,000 tons of CO₂ •

- 100 GWh of energy •
- 87,000 tons of materials

Microalgae as raw materials in biorefinery concept

Society

Feeds

Fuels

Fibers

Products

Migroalgae : a versatile raw materials for biorefinery and circular economy

Biochemical composition

Factors Affecting Biochemical Profiles

Factors

- Light (photo-period and intensity)
- Temperature
- Nutrient-status (nitrogen availability)
- Nutrition (media)
- Salinity
- Carbon availability (CO₂ or organic carbon)
- Growth phase

Fig. 3. Indigenous alga with high-value compounds. *Euglena cf. sanguinea* collected from a pond enriched by agricultural run-off. The photo, taken under brightfield transmission illumination, shows distinct regions of red carotenoids (presumably astaxanthin esters), green photosynthetic chlorophyll, and clear paramylon carbohy-drate granules (storage material).

A.C. Wilkie et al. 2011

Affect the biochemical composition and therefore bioproduct potential of microalgae

Microalgae : 3G biorefinery

First Generation : edible crop

Sugarcane, rice, wheat, patato, sugar beet, etc

Second generation : wastes, lignocellulosic biomass Sugarcane bagasse, forest residues, grass, cell biomass from fermentation, etc Low scale Antioxidants, medcines, dietary

Biorefinery

Third generation : Algae Botryococcus braunii, Crypthecodinium, Nitzschi sp., etc

Forth generation : non-edible CO₂, Jatropha, Castor, Karanja

High scale Biopolymer, biofuels, chemicals, food, biofertilizers

Adapted from Romeo-Garcia et al. 2017

Value pyramid of biomass in a biorefinery concept

Mainstream Biorefinery with Microalgal Biomass Cascad Principle

Microalgae : Tool for waste treatment

CO₂ mitigation in a power plant using chemical looping combustion and microalgae cultivation for biofuel production

Mungui-Lopez et al. 2018

Nutriment rich Wastewater as feedstock

Figure 1 Scheme of the INCOVER plant located at the Agròpolis campus, Viladecans, Barcelona.

Uggetti et al. 2018

Waste treatment (human activities)

biorefinery

Adapted from Zhu 2015

Conclusions

We need Circular economy for :

- Environment: inefficient use of resources has negative environmental impacts
- Access to raw materials: scarcity or depletion of resources, dependence of EU on imports from often politically unstable countries- question of price volatility
- Societal pressures: global middle class to double to nearly 5 billion by 2030, which will cause rise in consumption and increase pressure on resources
- Innovation and growth potential

Environmental Microalgal Biorefinery

Real opportunity for circular econony

Université de Mons

Anne-Lise Hantson

Thank for your attention

