# Introduction to Sustainability evaluations

## Toolbox



Prof. J. Dewulf Ghent University Belgium

# 1. Introduction

# Where do we come from?



#### **Department of Green Chemistry and Technology**

Sustainable Systems Engineering Group

# Sustainability Systems Engineering group:



# 2. Sustainability Assessment toolbox



#### (Environmental) sustainability: increasingly a hot topic

### The Sustainability Assessment Toolbox today:

#### Different concepts as a base for sustainable management:



Different concepts/frameworks:

- -They cover different aspects
- -They partially overlap
- -Need for a consistent base
- -Anthropogenic focus



Key advantage: avoiding burden shifting (type of impact, place, time ...)

Source: Dewulf et al., 2016



#### Life cycle assessment (LCA):

EC Communication on Integrated Product Policy (COM (2003) 302): "Life Cycle Assessments provide the best framework for assessing the potential environmental impacts of products currently available"



# What are Critical Raw Materials?

#### EU 2014 SUPPLY RISK Economic Supply risk importance **Crtitical raw** • Political and economic stability • Importance of a raw • Level of production material per concentration economic sector & importance of the • Potential for sector in the EU substitution economy • Recycling rate

ECONOMIC IMPORTANCE

#### EU 2014 :

Supply risk



# **Social Life Cycle Analysis**

#### **Social Impact:** Quantifiable?

# Social Assessment: UNEP SETAC framework based on 'who affected':

| Stakeholder categories        | Impact categories                                                                                                                                                                                                                             |                                                                                                                               |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
|                               | midpoint                                                                                                                                                                                                                                      | endpoint                                                                                                                      |  |
| Workers/employees             | Freedom of association and collective<br>bargaining, child labour, fair salary, working<br>hours, forced labour, equal<br>opportunities/discrimination, health and<br>safety, social benefits/social security                                 |                                                                                                                               |  |
| Consumer                      | Health and safety, feedback mechanism,<br>consumer privacy, transparency, end of life<br>responsibility                                                                                                                                       | Human rights<br>Working conditions<br>Health and safety<br>Cultural heritage<br>Governance<br>Socio-economic<br>repercussions |  |
| Society (national and global) | Public commitments to sustainability issues,<br>contribution to economic development,<br>prevention and mitigation of armed<br>conflicts, technology development,<br>corruption                                                               |                                                                                                                               |  |
| Local Community               | Access to material and immaterial resources,<br>delocalization and migration, cultural<br>heritage, safe & healthy living conditions,<br>respect of indigenous rights, community<br>engagement, local employment, secure<br>living conditions |                                                                                                                               |  |
| Value chain actors            | Fair competition, promoting social<br>responsibility, supplier relationships,<br>respects of IP rights                                                                                                                                        |                                                                                                                               |  |

# Social Assessment: How to quantify impacts?

Two possibilities:

- How many children are working in the production chain? Difficulties:
  - How to get the data
  - How to compare with other indicators (e.g. risk)
- Semi-quantification:

The Likert scale – on a scale from 1 to 5 how many children work in the production chain?

Very few, few, average, rather many, a lot

Social Assessment: Alternative approach: flagging A life cycle concerns a lot of processes: Solution = flagging Per phase of the life cycle (resource extraction, production, use and end-of-life) identify 3 hotspots per indicator

Data from:

- Surveys
- Literature
- Databases: e.g. social hotspots database
- Expert judgement

## First SLCA software: Social Hotspots DataBase (SHDB)





# Second SLCA software: PSILCA (Open LCA)

# Social indicators

| Stakeholder              | Subcategory                                         | Indicator                                                                        |             |
|--------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------|-------------|
| So F a                   | Child labour                                        | Children in employment amale                                                     |             |
|                          |                                                     | Children in employr 4 Social indicators                                          |             |
|                          |                                                     | Children in employr 4 Local Community                                            |             |
|                          | Forced Labour                                       | Goods produced by                                                                |             |
|                          |                                                     | Frequency of forced Local Employment                                             |             |
|                          |                                                     | Trafficking in person                                                            |             |
|                          | Fair Salary                                         | Living wage, per mc At International Migrant Stock                               |             |
|                          |                                                     | Minimum wage, per Att International migrant workers in the sector                |             |
|                          |                                                     | Sector average wag At Net migration rate                                         |             |
|                          | Working time                                        | Weekly hours of wo                                                               |             |
|                          | Discrimination                                      | Gender wage gap Safe and healthy living conditions                               |             |
|                          | Health and Safety                                   | Rate of non-fatal ac                                                             |             |
|                          |                                                     | Rate of fatal accider                                                            |             |
|                          |                                                     | DALYs due to indoo                                                               |             |
|                          |                                                     | Presence of sufficie                                                             |             |
|                          |                                                     | Workers affected by Discrimination                                               |             |
|                          | Social benefits, legal issues                       | Social security expe                                                             |             |
|                          |                                                     | Evidence of violatio                                                             |             |
|                          | Freedom of association<br>and collective bargaining | Trade union density                                                              |             |
|                          |                                                     | Right of Association Sector average wage, per month                              |             |
|                          |                                                     | Right of Collective b                                                            |             |
|                          |                                                     | Right to Strike                                                                  |             |
| VALUE<br>CHAIN<br>ACTORS | Fair competition                                    | Presence of anti-col                                                             | legislation |
|                          | Corruption                                          | Public sector corrup                                                             |             |
|                          |                                                     | Active involvement                                                               |             |
|                          | Promoting social responsibility                     | Membership in an initiative that promotes social responsibility along the supply | chain       |

# Social LCA development

- Far less mature than environmental LCA
- First databases available
- Constructed:
  - Sector specific
  - Country specific
- Based on semi-quantitative indicators

#### **Basis: World Economic Input/Output models:**

|                             | PSILCA                                                 | SHDB                                                 |
|-----------------------------|--------------------------------------------------------|------------------------------------------------------|
| Input/output model          | Eora Multi-regional<br>input/output database<br>(2012) | Model of the Global trade<br>analysis project (GTAP) |
| Number of countries covered | 189                                                    | 113                                                  |
| Number of industry sectors  | 14,838 (commodities + sectors)                         | 57                                                   |

# 3. New challenges beyond Brundtland

# **Biomass**

#### -Solar energy $\rightarrow$ photosynthesis $\rightarrow$ plants = biomass



-Photosynthetically active radiation = PAR = spectral range 400 to 700 nanometer that can be used by plants

# **Unconventional fossils: shale gas**



Source: U.S. Energy Information Administration, Annual Energy Outlook 2012 (June 2012).

1990-2035

History

# (In)efficiencies



"Major opportunities to provide more services to the community with lower carbon footprint is not to be situated in alternative resources but rather in improved resource utilization efficiency"



Jos Delbeke, EU DG ENVIRONMENT Keynote lecture at "Innovation for Sustainable Production" Bruges 18–21 April (2010).

# Mineral resources

Fight for natural resources: Mobile phone Laptop **Electrical cars** 



Storage of (solar) energy/electricity

Cobalt example:

- Co for batteries: 700 t in 1995 to 12000 t in 2005
- 2007: 25% of global Cobalt market to batteries







> 40 elements ...

# From waste to Circular Economy

#### 1990s: INDUSTRIAL ECOLOGY





#### DS, 16/2/2005

2016-2020: EU project: RePair



Ivago maakt stoom van afval

Spectaculaire werkzaamhe den gisterochtend bij de verbrandingsoven van de intercommunale Ivago in de Proeftuinstraat in Gent. Er worden volop stoomketels geïnstalleerd. Daardoor gaat de warmte van de verbrandingsoven niet meer verloren, maar wordt ze omgezet in stoom en elektriciteit. De gigantische onderdelen van de oven wegen elk ruim 50 ton. Ze worden als een meccano in elkaar gezet met een reuzenkraan. Via een twee kilometer lange pijplijn gaat de stoom naar het Universitair Ziekenhuis, dat er zijn gebouwen mee zal verwarmen. Normaal gezien moet de vernieuwde oven af zijn tegen het najaar. © Gianni Batbieux From concepts in the 1990s to implementation into policy:

# EU "Circular Economy Package" Dec 2015

Commission

CIRCULAR ECONOMY Closing the loop

AN AMBITIOUS EU CIRCULAR ECONOMY PACKAGE

# 4. Life Cycle Assessment

#### **Basis:**

#### Impact assessment modeling based on cause and effect chain

At endpoint level: example for Climate Change:



#### Life Cycle Assessment

assessing impacts on 3 endpoints:

- Ecosystem health
- Human health
- [Natural Resources] (↔ resource depletion)

Highly debated subject: science/policy makers/industry

- Problems with implementation in LCA (PEF pilots, 2013-2018):

LCA: "the compilation and evaluation of the inputs, outputs and the potential environmenal impacts of a product system (good or service) throughout its life cycle, from the extraction of raw material to product disposal"





International Organization for Standardization:

guidelines for LCA



Step 1: Goal and scope definition

Goal:

- 1. Intended application / reason for the study
- 2. Audience of the study





#### **Example of timber**

Life cycle of timber



Goal:

- What is the impact of timber compared to concrete as a construction material? Which step of its life cycle has the highest impact?
- 2. Audience of the study: general public or building company
Scope:

1. Choice of functional unit (FU):

Amount of the studied good(s) and/or service(s) + *How long? Which quality?* 

Example: plastic vs. paper bag for shopping: volume? carrying capacity? lifetime, re-usable?

- $\rightarrow$  fair comparison needed
- $\rightarrow$  service: carrying 10 kg of identical goods



### Scope:

### 2. Choice of system boundaries



Scope:

2. Choice of system boundaries:

Time and money needed for data collection



Cut-off criteria

e.g. >1% of mass input



2. Choice of system boundaries

Subdivide system into:

### 1. Foreground system:

- core processes under direct control or decisive influence
- specific/primary data
- 2. Background system:
  - auxiliary processes
  - generic/secondary data

### Step 2: Life cycle inventory analysis

Data collection about input and output flows of the system



Most time consuming step

Elementary flows to and from the natural environment:



Cause-effect chain

Besides emissions (elementary flows), other output flows:



Difficult distinction, time-dependent

Example of sawn timber:



#### Sawn timber: main product / Saw dust: waste or coproduct?

Saw dust as waste: no environmental impact Saw dust as coproduct: how to divide environmental impact between sawn timber and saw dust?

### **Multifunctionality issue:**

A system or process produces more than one product

How to assign the inventory flows and the associated environmental impacts to two or more products?

ISO guidelines (2006)

### Step 3: Life cycle impact assessment

Data inventory: elementary flows (natural resource use and emissions)



### Classification of elementary flows into impact categories

### Examples:

Impact categories

Global warming Stratospheric ozone depletion Photochemical smog formation Human carcinogenicity Atmospheric acidification Aquatic toxicity Terrestrial toxicity Habitat destruction Depletion of nonrenewable resources Eutrophication Characterization: quantification of the potency of the env. effect

Example Climate Change impact:



GWP: global warming potential

Characterization at midpoint or endpoint level

### At endpoint level: example for Climate Change



Characterization at midpoint or endpoint level

# At endpoint level:

- At the end of the cause-effect chain
- Better comprehensible to broad audience
- Higher uncertainty (compared to midpoint)

Damage to the Areas of Protection (AoPs):



### Midpoint indicators linked to endpoint indicators



#### **IMPACT CATEGORIES**

#### DAMAGE TO AoPs

### Step 4: Interpretation

- Interpret results of the impact assessment
- Answer research questions defined in the goal
- One product: identify hot spots in the life cycle
- Two or more products: recommend about product with lowest environmental impact

! Take into account limitations, choices and assumptions

**Uses of life cycle studies** 

1) Product comparison



Plastic vs. fuel: Which use of the Brazilian ethanol can bring more environmental gains?

Rodrigo A.F. Alvarenga, Jo Dewulf\*

Is it better to remove pharmaceuticals in decentralized or conventional wastewater treatment plants? A life cycle assessment comparison

Elorri Igos, Enrico Benetto \*, Silvia Venditti, Christian Kohler, Alex Cornelissen, Ruth Moeller, Arno Biwer

### Uses of life cycle studies

### 2) Product design and improvement

- identify processes, ingredients, and systems that are major contributors to environmental impacts
- compare **different options** within a particular process with the objective of minimizing environmental impacts

### Eco-design

ISO: "a process **integrated within product design and development** that aims to reduce environmental impacts and continually to improve the environmental performance of the products, throughout their life cycle"

# 5. Key challenge in LCA: Resources

Insights from a thermodynamic approach

# What basis to be chosen for integrated resource mgt?



Prof. Whitesides (Harvard) at Green Chem. Conf. (Washington, 2005):

Sustainable technology development: If emissions are a bit under control:

- Economically sound
- Thermodynamically sound

Idea: take thermodynamics as a base for resource management that enables:

- Overall resource input assessment
- Overall resource efficiency assessment

# First law and Second law ...

Explaining second law through the exergy concept

What if our world were an infinite hazy desert? The sand and air are warm, an ocean of energy – energy everywhere. But if you try to use it, it doesn't work. A landscape of uniformity, nothing concentrated, nothing unique.

#### (W. Hermann, Stanford, 2007)

Fortunately, the world we live in is rich and varied, with energy existing in a panorama of forms in an array of concentrated pockets and flows.









Energy can be used and work performed when a substance that is different from its surroundings is allowed to equilibrate

# Resources

are energy and matter that exist out of equilibrium with the environment

Public domain



### Assess the thermodynamic efficiency: exergy analysis



Source: Dewulf et al., 2008

# Calculation of exergy: matter flow - chemical exergy

Final state in physical exergy calculation = initial state in chemical exergy calculation

Chemical exergy is equal to the **maximum** amount of work obtainable when the substance under consideration is brought **from the environmental state to the dead state** through chemical reactions and exchange of compounds.

# Calculation of exergy: matter flow - chemical exergy

Final state in physical exergy calculation = initial state in chemical exergy calculation

Chemical exergy is equal to the **maximum** amount of work obtainable when the substance under consideration is brought **from the environmental state to the dead state** through chemical reactions and exchange of compounds.

Chemical exergy is equal to the **minimum** amount of work necessary to **synthesise**, and to deliver in the environmental state, the substance under consideration **from reference substances (in dead state)** by means of processes involving heat transfer and exchange of substances only with the environment.

### Homogenous reference environment

- Atmosphere
- Sea (dissolved ions)
- Earth's crust

# Composition $\rightarrow$ Reference substances

- Abundant and most probable in the environment
- Low chemical potential
- Chemically stable
- In equilibrium with the rest of the environment
- Present in aggregation state (solid, liquid or gas) at which they would normally occur at  $T_0$  and  $P_0$
- Present at average natural world concentration

By definition: a reference substance at reference concentration (or partial pressure for a gas) and reference aggregation state  $\rightarrow Ex = 0$ 

e.g.  $CO_2$  (g) at  $P_{00}$  (0.03 kPa)

Following aspects should be taken into account when quantifying chemical exergy:

- Chemical formula
- Aggregation phase (solid, liquid or gas)
- Concentration (solid, liquid) or partial pressure (gas)
- Crystal structure (solid)

### **Non-reference substances**

Transformed into reference substances (at standard conditions)

Example: methane  $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ 

Maximum amount of work obtainable out of a reversible reaction:

$$\Delta G_r^0 = \sum G_{products}^0 - \sum G_{reactants}^0$$
$$= \sum H_{products}^0 - \sum H_{reactants}^0 - T_0 (\sum S_{products}^0 - \sum S_{reactants}^0)$$
$$= \sum E x_{ch, products}^0 - \sum E x_{ch, reactants}^0$$

Exergy of non-reference substance is found if exergy values of other compounds are known

Solid fuels Solid hydrocarbon  $\beta = 1.0435 + 0.0159 \frac{H}{C}$ Solid C, H, O compounds  $\beta = 1.0438 + 0.0158 \frac{H}{C} + 0.0813 \frac{O}{C} \qquad \left[\frac{O}{C} \le 0.5\right]$  $\beta = \frac{1.0414 + 0.0177 \frac{H}{C} - 0.3328 \frac{O}{C} \left[1 + 0.0537 \frac{H}{C} \le 0.5\right]}{1 - 0.4021 \frac{O}{C}} \qquad \left[\frac{O}{C} \le 2\right]$ 

Solid C, H, O, N compounds  $\beta = 1.0437 + 0.014 \frac{H}{C} + 0.0968 \frac{O}{C} + 0.0467 \frac{N}{C} \qquad \left[\frac{O}{C} \le 0.5\right]$   $\beta = \frac{1.044 + 0.016 \frac{H}{C} - 0.3493 \frac{O}{C} \left[1 + 0.0531 \frac{H}{C}\right] + 0.0493 \frac{N}{C}}{1 - 0.4124 \frac{O}{C}} \qquad \left[\frac{O}{C} \le 2\right]$ 

Bituminous coal, lignite, coke, peat  $\beta = 1.0437 + 0.1896 \frac{Z_{H2}}{Z_c} + 0.0617 \frac{Z_{02}}{Z_c}$   $+ 0.0428 \frac{Z_{N2}}{Z_c} \quad \left[\frac{Z_{02}}{Z_c} \le 0.667\right]$   $\beta = 1.0406 + 0.0144 \frac{H}{C}$ Liquid C, H, O compounds  $\beta = 1.0374 + 0.0159 \frac{H}{C}$  $+ 0.0567 \frac{O}{C} \qquad \left[\frac{O}{C} \le 1\right]$ 

Liquid fuels

Liquid hydrocarbon



Liquid technical fuels  

$$\beta = 1.0401 + 0.01728 \frac{Z_{H2}}{Z_c} + 0.0432 \frac{Z_{02}}{Z_c}$$

$$+ 0.5904 \frac{Z_s}{Z_c} \left(1 - 2.0628 \frac{Z_{H2}}{Z_c}\right)$$

Wood

$$= \frac{1.0412 + 0.216\frac{Z_{HZ}}{Z_c} - 0.2499\frac{Z_{OZ}}{Z_c}\left[1 + 0.7884\frac{Z_{HZ}}{Z_c}\right] + 0.045\frac{Z_{NZ}}{Z_c}}{1 - 0.3035\frac{Z_{HZ}}{Z_c}}$$
$$\left[\frac{Z_{OZ}}{Z_c} \le 2.67\right]$$

# Environmental sustainability assessment of food waste valorization options

T. Vandermeersch<sup>a,b</sup>, R.A.F. Alvarenga<sup>a</sup>, P. Ragaert<sup>b</sup>, J. Dewulf<sup>a,\*</sup>



# Resource management: from process to life cycle level





Source: Ivanova et al., 2016

# Methods were developed to calculate natural resource "footprints"



## <u>C</u>umulative <u>E</u>xergy <u>E</u>xtraction of the <u>N</u>atural <u>E</u>nvironment

(Dewulf et al., 2007)
## 6. Illustrative cases

## SUBSTANTIATING ENVIRONMENTAL SUSTAINABILITY CLAIMS



degradable station-unitality certified algebra recyclable algebra geographe recyclable algebra technologic technol

## Case :

# Are supercritical solvents green?

Green Chemistry Principle 5: *The use of auxiliary substances (e.g., solvents, separation agents, etc.) should be made unnecessary wherever possible and innocuous when used.* (Anastas & Warner)







Case at Janssen Pharmaceutica (J&J):



Substitute classical solvent separation by using supercritical CO<sub>2</sub>:

Is this more environmental sustainable from a resource point of view?

- at process level : α
- at plant level: β
- at overall supply chain: γ



(Van der Vorst et al., Green Chem., 2010)

# Environmental Sustainability Assessment of Algae Production Systems Methodological development and case studies

Ir. Sue Ellen Taelman

Public PhD defense - 12/05/2016

Promotors Prof. Dr. Ir. Jo Dewulf Prof. Dr. Ir. Steven De Meester



• Potential applications of algae

#### **Pollution treatment**



Food



Cosmetic industry



#### Feed



#### Energy



Chemical industry

#### Fertilizer









• Feed sector is extremely interested

Meat and fishery production, dressed weight or eviscerated basis



*Notes:* Total fishery production = capture + aquaculture. Beef and pork on a dressed-weight basis; poultry and fish on an eviscerated basis. *Sources:* OECD and FAO Secretariats. • High amounts of proteins used in EU for animal feeding: 26 million tonnes annually



- Challenge: increase feed production while reducing the ecological footprint worldwide (import  $\searrow$ )
- **Solution?** Farming for protein self-sufficiency in Europe but avoid competition for fertile land

## Algae? Main driving forces...

 $\rightarrow$  High protein content found in several algal species

|                      | Proteins (% DM) | Carbohydrates (% DM) | Lipids (% DM) |
|----------------------|-----------------|----------------------|---------------|
| Scenedesmus obliquus | 50-56           | 10-17                | 12-14         |
| Chlorella vulgaris   | 51-58           | 12-17                | 14-22         |
| Dunaliella salina    | 57              | 32                   | 6             |
| Tetraselmis maculata | 52              | 15                   | 3             |
| Spirulina platensis  | 46-63           | 8-14                 | 4-9           |
| Spirulina maxima     | 60-71           | 13-16                | 6-7           |
| Soybeans             | 42              | 20                   | 33            |

**Sources:** Encarnación et al., 2010 Keshun (1997)

### $\rightarrow$ Shift to unproductive land or oceans



• A few cultivation systems tested in Europe

### Photobioreactors (PBRs)









- Several LCIA methods are developed during recent years focusing on emissions to the environment (e.g., IPCC 2007)
- However, resource efficiency is a major challenge in our everyday life, but only few LCIA methods account for resource consumption
- E.g., CEENE method (Dewulf et al. 2007)



All resources expressed in exergy

→not only the quantity but also the quality of a resource can be assessed

Sum of all natural resources consumed= environmental resource footprint

#### Advantage algae cultivation: usage of waste streams

-> Integrated algal biorefinery in The Netherlands (Lelystad)





Figure 7 Process flow scheme microalgae production chain (pilot 2012, scale 240 m<sup>2</sup>). Data inventory per MJ<sub>ex</sub> dry matter algal biomass. Overall there are five distinct subprocesses within the foreground system (indicated by the red dotted line): nutrient mixing (process A), cultivation *Nannochloropsis sp.* (process B), membrane separation (process C), centrifugation (process D),



Data from Prudêncio da Silva et al.

17

Comparison with a relevant protein alternative :



## **CEENE** results

Focus on: 1 MJ<sub>ex</sub> meal



> factor 100 difference could be expected: mature large scale technology (soybean) versus young small scale technology (algae)

#### **Future outlook?**

Possible to achieve a lower footprint? Let's have a look...

- Electricity based on renewables (wind energy)
- Reducing operating hours of blowing and mixing
- More efficient ventilators (not oversized)
- Higher yields under current climate possible
- Higher harvesting efficiency possible

Total resource footprint (CEENE) drops with factor 20!

When abiotic renewables are considered inexhaustible -> similar footprint!

Even other possibilities: *Recycling of centrate Use of digestate* 

