

Improvement of the flame retardancy of cork by phosphorylation

Application to artificial turf structures

29^{èmes} JOURNÉES DU **GDR FEUX** **Angeline Paturel**University of Lille, France.

1st & 2nd JULY 2021

Artificial turf: Sports structures

GRASS

Complex and multilayered material:

a: Backing (PP)

b: Sand

c : Performance layer (infill)

d: Straight pile (PE)

Regulations: Floorings

Evaluation of the fire behaviour of floorings:

1. Radiant panel test EN ISO 9239-1

2. Single-flame source test EN ISO 11925-2

- Vertically positioned sample
- Determination of the flame height

Regulations: Floorings

Evaluation of the fire behaviour of floorings:

1. Radiant panel test EN ISO 9239-1

- Energy heat flux gradient
- Flame propagation (burnt length)
- Test duration: 30 min maximum
- Specimen size : (1050 x 230) mm²
- Smoke density (additional requirement)

Regulations: Radiant panel test EN ISO 9239-1

GRASS

Determination of the **critical heat flux (CHF)**:

Heat flux distribution

Classifications: EN ISO 13501 - 1

GRASS

Rating for floorings:

Class	Radiant panel test	Single – flame source test	Additional requirements	
	EN ISO 9239 – 1	EN ISO 11925 – 2*		
B _{FL}	CHF \geq 8 kW/m ²	Fs \leq 150 mm within 20 s	Smoke ≤ 750%.min (s1)	
C_{FL}	CHF $\geq 4.5 \text{ kW/m}^2$	Fs \leq 150 mm within 20 s	Smoke ≤ 750%.min (s1)	
D _{FL}	CHF \geq 3 kW/m ²	Fs \leq 150 mm within 20 s	Smoke ≤ 750%.min (s1)	
E _{FL}	No requirements	Fs \leq 150 mm within 20 s	- No requirements	
F _{FL}	- No requirements	No requirements		

^{*}Ignition time: 15 s

For indoor applications:

Minimum C_{FL} : CHF $\geq 4.5 \text{ kW/m}^2$

- → Burnt length about 420 mm max
- \rightarrow Smoke rate S1 \leq 750 %.min

Regulations: Radiant panel test EN ISO 9239-1

GRASS

Evaluation of the fire behaviour of floorings exposed to an energy heat flux gradient

- Flame propagation (burnt length)
- Test duration: 30 min maximum
- Specimen size: (1050 x 230) mm²
- Smoke density (additional requirement)

Reproduced at 1/3 scale:

- Faster and cheaper experiment
- Smaller sample size: (350 x 77) mm²
- Validated by testing reference samples on the standardised test*

Lab scale radiant panel test

Fire behaviour: Lab – scale radiant panel test*

GRASS

*at 1/3 scale

1. Fire retardant performance of artificial grass structures

Recorded parameters	S – SBR	S – Cork	S – TPE	S – EPDM	S – FR EPDM
Burnt length at extinction (%)	100	54	63	51	20
Burning time	27 min 05 s	13 min 22 s	30 min	15 min 38 s	10 min 19 s
CHF (kW/m²)	0.9	2.7	1.9	3.0	9.4
Ignition time (s)	0	0	8	5	5
Class	E _{fl}	E _{fl}	E _{fl}	D _{fl}	B _{fl}

Objective:

Focus on cork-based structure:

- ECHA: Ban of microplastics under debate
- Eco-designed approach

Flame retardant EPDM:

- Suitable for indoor use
- Not an environmentally friendly solution

Infill

Strategy:

Improvement of the fire behaviour of cork to meet the fire safety regulation for indoor use (CFL class).

Cork modification

GRASS

2. Cork modification process

Cork composition:

• Suberin: 42%

• Lignin: 22%

• Polysaccharides: 15%

• Extractives: 14%

• Ash: 2%

н₂сон HO $(CH_2)_{21}$ HO, HO' ÓН OH HO HO' OH Xylose Bonds: Glucose B-O-4 OCH: a-0-4 β-β 4-0-5

Presence of **hydroxyl groups –OH**

→ Reactive groups suitable for grafting

Cork modification

GRASS

Objectives:

- Enhance the fire behaviour of cork granules
- Increase the charring phenomenon of cork

Limitation:

Avoid toxic compounds, especially halogenated flame retardants

Litterature review:

- No paper on cork flame retardancy
- Flame retardancy of lignins or cellulose through grafting of phosphorus moities demonstrating high performance

Cork modification: Phosphorylation

GRASS

3. Cork phosphorylation protocol

First protocol¹:

- Tetrahydrofuran
- Phosphorus pentoxide
- Cork

Minor improvements

THF

Second protocol²:

- Ethanol
- Phosphoric acid
- Triethyl phosphate
- Phosphorus pentoxide
- Cork

Significant improvements

- → 3 phosphorylated corks (P-Cork):
 - Process repeatability confirmed

 $[\]frac{1}{2}$ B Prieur et al. "Phosphorylation of lignin: characterization and investigation of the thermal decomposition", RSC Advances, 2017.

¹¹

Cork modification: Characterizations

- Carbonaceous residue at 600°C (Oven)

→3 phosphorylated corks:

- P-Cork (1)
- P-Cork (2)
- P-Cork (3)

Up to +9% of carbonaceous residue

- →Improvement in the amount of residue
- → Significant improvement in charring phenomenon

Cork modification: Characterizations

EtOH + H₃PO₄ + Et₂PO₄ +

GRASS

Thermogravimetric analysis (TGA): → Thermal Stability

	Carbonaceous residue (%)		
	600°C	800°C	
Cork	23.2	18.5	
P-Cork (1)	27.5	22.7	
P-Cork (2)	27.4	24.7	
P-Cork (3)	24.6	21.8	

- → Improvement in thermal stability
- → Improvement in the **final residual mass**

Fire behaviour: Lab – scale radiant panel test*

GRASS

4. Fire performance of phosphorylated cork based structure

*at 1/3 scale

Recorded parameters	S – Cork	S – Phosphorylated Cork
Burnt length at extinction (%)	54	100 / 29
Burning time	13 min 22 s	10 min 23 s
CHF (kW/m²)	2.7	0.9 / 7.1
Ignition time (s)	0	0
Class	E _{fl}	E _{fl} / C _{fl}

Considering only the deeply degraded part:

- Significant improvement in fire performance
- Burns over a shorter distance in a shorter time
- Meeting of CFL class → suitable for indoor use

"Flame run" at the surface

Considering the whole burnt length:

- Significant improvement in charring but significant flame spread
- No improvement in fire performance

Conclusion

GRASS

Thank you for your attention.

Do you have any questions?

29^{èmes} JOURNÉES DU **GDR FEUX**

Angeline PaturelUniversity of Lille, France.

1st & 2nd JULY 2021